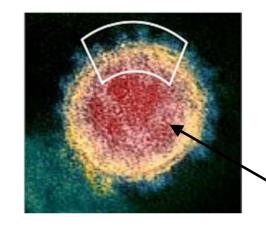
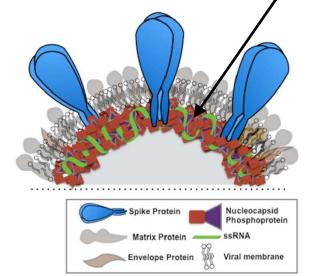


Covid-19


Espline SARS-CoV-2

SARS-CoV-2 structure and assay target

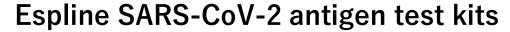
https://phil.cdc.gov/Details.aspx?pid=23311



Assay target = NP (Nucleocapsid protein)

NP is released from membrane and RNA by pretreatment with detergent

NP is measured/detected by sandwich immunoassay


Dinesh et al. (2020). Structural basis of RNA recognition by the SARS-CoV-2 nucleocapsid phosphoprotein bioRxiv https://dx.doi.org/10.1101/2020.04.02.022194

Different types of COVID-19 tests

		Antigen			
	Real-time PCR	CLEIA (Lumipulse SARS-CoV-2 Ag)	Immuno-chromatography assay (Espline SARS-CoV-2)	Antibody test	
Purpose	Detecting	the presence of antigen (= cur	rent infection)	Determining past infection (= immunity rates in a community)	
Sample type	Nasopharyngeal swab fluid or Saliva	Nasopharyngeal swab fluid or Saliva	Nasopharyngeal swab fluid	Blood (Serum)	
Target	Viral RNA	Nucleocapsid protein	Nucleocapsid protein	IgM/IgG antibodies	
Sensitivity	***	***	**	Depends on kit	
Specificity	***	***	***	Depends on kit	
Test operation	Instrument-based	Instrument-based	Manual (available for PoC)	Manual (available for PoC)	
Sample-to- answer time	~ 2 days	<1hr	<1hr	<1hr	
Others		Capable of testing 60 or 120 samples per hour on Fujirebio instrument, Lumipulse G600I or G1200			

- Immuno-chromatography (ICA)
- Sample type: nasopharyngeal swab fluid
- Sample volume: 20uL
- Test result TAT: ∼30 minutes
- Recommended in Japanese Guideline

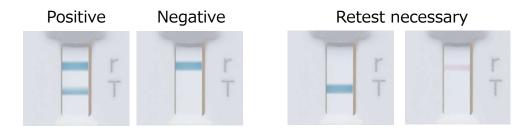
Product overview

Simple test procedure

Prepare sample processing solution

Extract samples into a squeeze tube

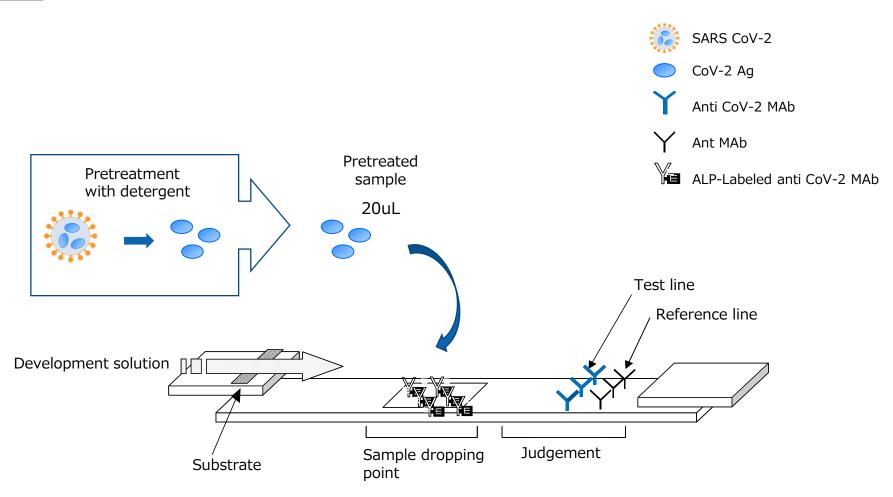
Leave to stand 5 min


Apply 2 drops of sample onto the sample window

Press the convex button

Reaction time

Easy result interpretation



Assay principle

Surv	eillance testing versus clinical testing
	Clinical testing:
	■ Symptomatic patients
	■ Need for high accuracy and sensitivity
	■ Not limited by costs
	☐ Diagnose delay but you can isolate such a person
	Surveillance testing
	☐ Asymptomatic individuals
	☐ Need for speed
	Speed of reporting is more important than sensitivity
Disa	dvantage of sensitive tests
	Unnecessary quarantine days due to identification in the recovery period who still have the virus but below the infectious threshold
NEE	D FOR:
	Need for Speed, frequency of testing, speed of result reporting, and as sensitive as possible (but marginally important)
	Identifying super spreaders

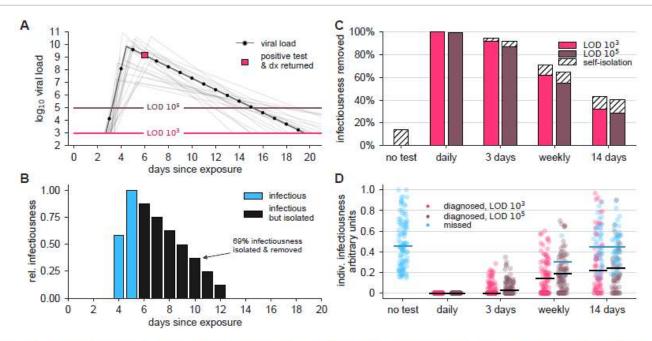
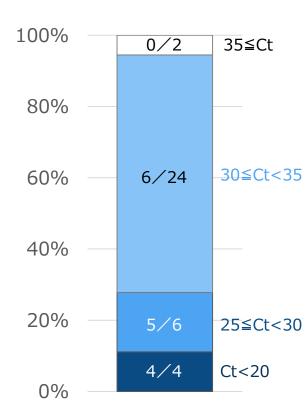


Figure 1: Surveillance testing effectiveness depends on frequency. (A) An example viral load trajectory is shown with LOD thresholds of two tests, and a hypothetical positive test on day 6, two days after peak viral load. 20 other stochastically generated viral loads are shown to highlight trajectory diversity (light grey; see Methods). (B) Relative infectiousness for the viral load shown in panel A pre-test, totaling 31% (blue) and post-isolation, totaling 69% (black). (C) Surveillance programs using tests at LODs of 10³ and 10⁵ at frequencies indicated were applied to 10,000 individuals trajectories of whom 20% would undergo symptomatic isolation near their peak viral load if they had not been tested and isolated first. Total infectiousness removed during surveillance (colors) and self isolation (hatch) are shown for surveillance as indicated, relative to total infectiousness with no surveillance or self-isolation. (D) The impact of surveillance on the infectiousness of 100 individuals is shown for each surveillance program and no testing, as indicated, with each individual colored by test if their infection was detected during infectiousness (medians, black lines) or colored blue if their infection was missed by surveillance or detected positive *after* their infectious period (medians, blue lines). Units are arbitrary and scaled to the maximum infectiousness of sampled individuals.

Comparison with qRT-PCR (1/2)

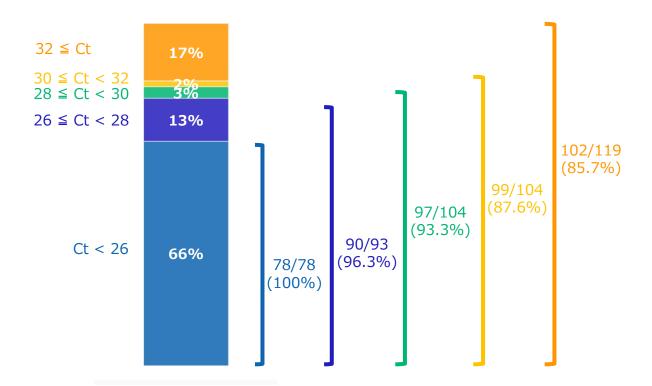


Espline (EL) shows as good a detection rate as qRT-PCR for clinical samples with Ct30 or less.

Espline results for aRT-PCR positive samples

		qRT-PCR		Total	PPV
		Positive Negative		Total	NPV
	Positive	15	2	17	88%
EL	Negative	21	68	89	76%
Total		36	70	106	
Concordance		42%	97%		

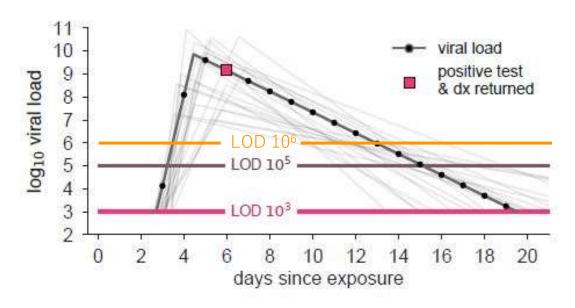
Studied by Toho university Under article submission (Ishii et al.)



Comparison with qRT-PCR (2/2)

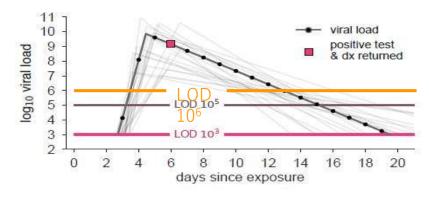
Espline shows as good a detection rate as qRT-PCR for clinical samples with Ct30 or less.

Positive rate of Espline for the nasopharyngeal swab samples in UVT (Universal Viral Transport) that were tested positive by qRT-PCR



ESPLINE SARS-CoV-2 Ag rapid test

- Correlation between ESPLINE SARS-CoV-2 and RT-PCR using 72 Japanese clinical samples:
 - The concordance rate between assays was 98% (44/45 cases) for negative samples and 37% (10/27 cases) for positive samples.
 - When comparison was based on the number of viral RNA copy numbers as determined by the one-step RT-PCR method, the concordance rates between the two assays was:
 - 83% (5/6 cases) for samples with 100 copies or more / test
 - 50% (6/12 cases) for samples with 30 copies or more / test.



- Correlation between ESPLINE SARS-CoV-2 and RT-PCR using 124 Japanese administrative samples:
 - The concordance rate between assays was 100% (100/100 cases) for negative samples and 67% (16/24 cases) for positive samples. Overall concordance was 94% (116/124)
 - When comparison was based on the number of viral RNA copy numbers as determined by the one-step RT-PCR method, the concordance rates between the two assays was:
 - 100% (12/12 cases) for samples with 1600 copies or more / test
 - 93% (14/15 cases) for samples with 400 copies or more / test
 - 83% (16/18 cases) for samples with 100 copies or more / test.
 - Same samples solution was used for both and swab has been submerged in the viral transport media

Cross reactivity

Espline showed no cross reaction with MERAS-CoV N protein, Influenza virus, or Human corona virus.

Cross reaction study using recombinant N protein of SARS, MARS, HCoV, and Influenza virus

	Antigen	Cross reaction
1	SARS-CoV-2	Yes
2	SARS-CoV	Yes
3	MERAS-CoV	No
4	HCoV-229E	No
5	HCoV-DC43	No
6	HCoV-NL63	No
7	HCoV-HKU1	No
8	Influenza Type A H1N1	No
9	Influenza Type A H3N2	No
10	Influenza Type B	No

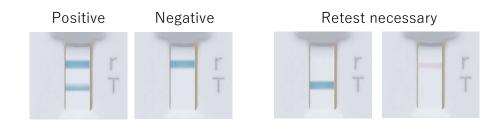
Cross reaction study using cultured human corona virus

	Cross reaction		
	Run 1	Run 2	
229E (ATCC VR-740)	No	No	
OC43 (Amsterdam I)	No	No	
OC43 (ATCC-VR1558)	No	No	
NL63 (Tokyo/SGH-36)	No	No	
HKU1 (Tokyo/SGH-15)	No	No	

Conducted by Suzuki T., National Institute of Infectious Diseases

Yamakawa K. Jpn J Med Pharm Sci Jun. 2020 Vol.77 No.6

ESPLINE SARS-CoV-2 Ag rapid test



Espline SARS-CoV-2

- Immuno-chromatography (ICA)
- Sample type: nasopharyngeal swab fluid
- Sample volume: 20uL
- Test result TAT: ~30 minutes
- Japan PMDA cleared on May 13, 2020
- Reimbursement eligible on May 13, 2020
- Recommended in Japanese Guideline on May 13, and June 16, 2020

Espline is a qualitative assay
Easy result interpretation

 Espline shows a detection rate as good as qRT-PCR for clinical samples with Ct30 or less.

Internal use only

Japan guideline

https://www.mhlw.go.jp/content/000640554.pdf

<Unofficial translation by Fujirebio>

Guideline for the use of SARS-CoV-2 Antigen detection kit

Initial version: May 13, 2020

Updated: June 16

Ministry of Health, Novel Coronavirus Response Headquarters

This guideline describes the approach and important notes to promote the appropriate use of the rapid antigen detection kit (Product name: Espline SARS-CoV-2, manufacturer: Fujirebio, Inc.) for the diagnosis of Novel Coronavirus infection (COVID-19). At this point the purpose of the use of this kit is to detect positive patients quickly.

When tested positive by this kit, it can be considered as a definitive diagnosis. For a patient with suspected infection and in between the 2nd to 9th day after symptom onset, negative result of this test kit does not require additional PCR testing. On the other hand, this kit requires a higher amount of virus in sample than PCR, at this point it is not suited to use this kit to a patient who has not presented symptom, because of the detectability limitation of this kit.

SD BIOSCIENCE vs ESPLINE

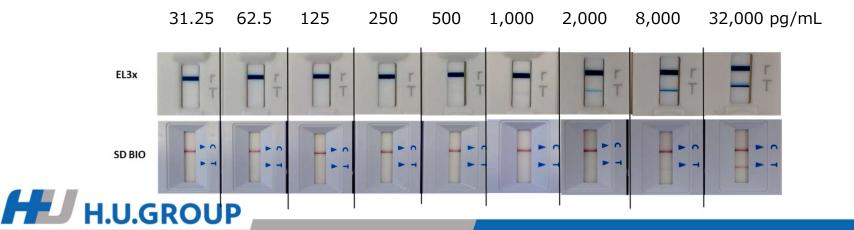
■ Sensitivity with recombinant antigen

Ag Concentration (pg/mL)	EL 3×	SD BIO
32,000	4.0	+
8,000	3.0	+
2,000	1.5	+w
1,000	1.0	-
500	1.0	-
250	1w	-
125	-	-
62.5	-	-
31.25	-	-

Protocol

Sample: SARS-CoV-2 NP Recombinant Ag

Sample processing:


EL $3\times$: Sample processing solution 2 10μ L + sample 20μ L

⇒5min⇒ drop 20µL

SD BIO: Sample processing solution 75μ L + sample 15μ L

 \Rightarrow drop 80µL

 Espline + Sample processing solution 2 showed approx. 10 times higher than SD Bioscience POCT.

Where is the test being used

U

- · Rapid test demand in following areas;
 - Emergency test when PCR is not available (quick results, anywhere)
 - Screening test to identify patients for further test (to save PCR capacity)
 - Test to healthcare professionals
 - Test to broad public; back to work/school/weekly test etc.
- Competitor kits in market
 - Korean (SD Biocensor), Chinese and Japanese (Denka)
 - However, based on internal evaluation, Espline performs x10 higher sensitivity compared to other kits
 - → Espline has highest performance for rapid test, not using instrument

Japanese kit

European kit will not contain a Swab

Process to CE-marking of ESPLINE SARS-CoV-2

timeline

Due date	Task	responsibility
31 july	Technical file ready (IFU,…)	FRI
11 August	CE-Marking	FRE
11 August	Press release	FRI - FRE
15 September	Kits in warehouse	FRE

P/N	Product name	test/box	Content		Store
260326 ESP	ESPLINE® SARS-CoV-2	100 tests	Reaction cassette	10 tests/Box x 10	2~30°C
			Sample Extraction Solution (Squeeze tube)	5 tubes/Bag x 20	
			Applicator Tip	10 tips/Bag x 10	

FRE support

Victor.ruiz@fujirebio.com

Marketing Manager

Veronica.olmedo@fujirebio.com sales.support@fujirebio.com

Rikkert.maertens@fujirebio.com

Marketing director

